
System of compact notations for numerical codes

Leonid E. Zakharov, Alex Pletzer,

Princeton University, Plasma Physics Laboratory,

Sergei Galgin,

University of California, San Diego

Andrei S. Kukushkin,

ITER, Max Plank IPP, Garshing, Germany

June 25, 2000

For easy navigation the enumeration in the Table of Contents, and the “(to ToC)” right after the section
names are the forward and backward hyperlinks between Table of Contents and the beginning of sections.

Contents
1 Introduction 2

2 General idea of the name design 2

3 NGS and compact TeX/LaTeX macros 5
3.1 Prefixes and TeX/LaTeX macros . 5
3.2 TeX/LaTeX macros for core recognition characters . 7
3.3 o-operators and TeX/LaTeX macros . 8

4 Token names for simple variables 9
4.1 Core of the token name . 9
4.2 Sub- and Super-scripts (suffixes) of token names . 13
4.3 Prefixes to the simple names . 13

4.3.1 Arguments to prefixes b and t . 17
4.3.2 Arguments to prefixes c,cm,e,p,r,x . 18
4.3.3 Arguments to prefixes h,q . 18
4.3.4 Arguments to prefixes u,v,w . 18
4.3.5 Arguments to prefix d . 18
4.3.6 Arguments to prefixes starting with f . 19
4.3.7 Repeatable and non-repeatable prefixes . 19
4.3.8 Prefixes for names of integer variables . 20

5 Void and Digital token-names 20

6 Composit names. o-operators 20

7 Interpretation of computer code names 21
7.1 Interpretation of C-names . 21
7.2 Interpretation of F-names . 23

8 Name design in Equilibrium and Stability Code (ESC) 23

9 Summary 26

1

1 Introduction (to ToC)

The system of compact notations for mathematical symbols in numerical codes, being used for a number of
years (at some lower level of development) by one of the authors (LEZ), provides unambiguous names for
variables either in FORTRAN- (case insensitive and referred later as F-) or C- (case sensitive) codes.

Adoption of any formalized system is useful in several aspects. First, it makes name generating easy.
Then, it allows to read arbitrary section of the source code without referring to definition of variables or to
the lists of notations. It makes documentation of the code more transparent and can be used for converting
mathematical documentation into a computer language source of the code in a semi-automatic manner. It
is especially useful for compact and efficient GUI, when the mathematical symbols or formulas should be
generated inside the code and then appear on the plots or in the I/O Dialog boxes.

The formalism of the name generating system (being referred as NGS) is consistent with the practice
of using compact name substitutions for trivial mathematical symbols, e.g., a for a or a1 for a1. In other
cases, it produces typically more compact names, like ga (rather than alpha) for α, or p2ga for α2 or
can generate names for much more complicated mathematical variables. Note, in this system the name pi

stands for pi not for π. Instead, a mathematical variable π is linked with the name gp, while the constant
π = 3.14159265358 . . . has the name cgp.

Depending on their position in the name, the system considers some characters as the service symbols,
attached to the name of the variable in order to reflect the mathematical meaning of the variable. The
formalism allows also to drop from the name some of the “ugly” system service constructions if this keeps
interpretation of the simplified names unambiguous.

The described system does not interfere with the definitions of variables or structures in the source code
which determine the computer representation of the variables. This system only simplifies the name making
process for objects which are related specifically to mathematics of the code algorithm. In this sense, it stays
comfortably with use of the English based descriptive names for strings, structures, functions, routines and
other non-mathematical objects in the codes.

In this paper, Sects. 2,3 describe the approach in general and introduces special TeX/LaTeX macros,
which reflect interpretation of the names and help to convert them into the math typesetting. Sects. 4-6
discuss the syntax and elements of the system more specifically and describe the design of names for simple
and composit variables. Sect. 7 specifies the rigorous rules of name interpretation (as they are implemented
in the name-interpretor code ngs). Sect. 8 gives examples of the names taken from ESC (Equilibrium and
Stability Code) for specification of equilibrium plasma magnetic configurations. Sect. 9 gives the summary.

2 General idea of the name design (to ToC)

Compactness and ambiguity in names come together. Without a context a simple example of legitimate
name

pa (2.1)

makes a real puzzle in interpretation

pa
?→ pa, pa

?→ p+ a, pa
?→ p− a, pa

?→(p)a, pa
?→(p→ a), pa

?→ pa, pa
?→ pa. (2.2)

Does this name represent an algebraic or other mathematical combination of 2 variables, or it is a pointer to
“a”, or it is “p” with a sub- or super- script “a” is impossible to determine. Or may be “p” in front of the
variable name has a special meaning. Even the author of the code in a while will not answer this question.
FORTRAN adds even more ambiguity and confusion by not distinguishing the small and capital characters
in the names.

It is a problem for the name design to save informativeness and compactness, which are intrinsic for the
math, while removing ambiguity. Note, that some level of ambiguity is reasonable and admissible in favor
of compactness. Thus, nobody in the math uses (p)a for the power of p in order to make it look different

2

from pa (which could be, e.g., p with a superscript a). But, the total mess in names of math variables in the
existing codes lacks them all, compactness, informativeness as well as uniqueness in the name interpretation.
Instead of leaving the naming math objects without a guidance, it should be a reasonable reference system
of conventions which makes the name design rigorous.

In fact, it is possible to keep names compact and still unambiguous. E.g., in the above example, different
possible meanings of the combination of p and a are reflected by the names

pa→ spa, p+ a→ popa, p− a→ poma, (p)a → poha,

(p→ a) → la, pa → s1pa, pa → s1 pa,
(2.3)

as explained later in the paper.
The general idea is to consider the name of the math variable as a name-object, whose structure can be

presented as

< name− object >≡ [< PREFIXES >] < CORE > [SUFFIX]︸ ︷︷ ︸
token−name object

[< o− OPERATOR >]︸ ︷︷ ︸
o−operator

[< name− object >]︸ ︷︷ ︸
next

name−object

,
(2.4)

where brackets “[. . .]” specify optional elements.
<CORE> is the only obligatory element of the name. It specifies the name of the math variable and,

optionally, the lengths of the super- and sub- scripts of the variable.
The optional <SUFFIX> object contains both super- and sub- scripts of the variable and has the general

form

< SUFFIX > ≡ [< superscript name− obj >][< underscore>][< subscript name− obj >]. (2.5)

Suffix is attached to the core of the token name.
Optional <PREFIXES> can be a series of prefixes

< PREFIXES > ≡ [< PREFIX >1][< PREFIX >2][< PREFIX >3] (2.6)

These three together make a token-name in (2.4), standing, basically, for one math variable (or the math
symbol). In the name for combination of variables, other names of math variables can be attached either
directly or through the o-operators which interpret left and right name-objects together (e.g., like a power
or a fraction).

<CORE> together with the <SUFFIX> and any number of preceding prefixes constitutes the token-name
objects (nested into each other). Each of the prefixes acts like an interpretation operator applied to the
nested token-name and specifies the mathematical meaning of this token-name.

What is called here the o-operator (<o-OPERATOR>) helps to combine two name-objects together. In
interpretation, it acts, like a mathematical symbol in a FORTRAN expression, on both left and right name-
objects surrounding it. Unlike the mathematics and FORTRAN, o-operator considers everything up to
beginning of the name-object (or to the previous o-operator) as its left operand. Everything that follows it
up to the end of the name-object is considered as the right operand of the o-operator. This is illustrated by

< name− obj. >︸ ︷︷ ︸
left operand

for o−operator 1

< o− OPERATOR 1 >< nm− obj. >︸ ︷︷ ︸
left operand

for o−operator 2

< o− OPERATOR 2 >< name− obj. > . . .︸ ︷︷ ︸
right operand

for o−operator 2︸ ︷︷ ︸
right operand

for o−operator 1

.

(2.7)

Thus, unlike the math symbol, the scope of action of the o-operator is global.
The format of the name-object is not fixed. Service elements can be dropped if this still keeps interpre-

tation the same or within an admissible level of ambiguity.

3

The above construction with a sufficient number of prefixes, o-operators and special symbols for the
name-objects gives a comprehensive way of name generating which could reflect the mathematical sense of
the variables or their combination.

NGS of this paper implements this idea in the name design within the restrictions imposed on the names
in the computer codes. The system relies on a set of English characters allowable for the C-code names.
In order to distinguish <PREFIXES>, <CORE> with <SUFFIX>, and o-operators in the name, it classifies all
C-name characters in the following categories

1. 14 prefix recognition characters

b, c, d, e, f, h, p, q, r, t, u, v, w, x (2.8)

2. 5 core recognition characters
a, g, s, y, z (2.9)

3. 1 o-operator recognition character
o (2.10)

4. 6 pseudo digit characters
i, j, k, l, m, n (2.11)

5. 10 digits

0 — 9 (2.12)

6. underscore
(2.13)

7. upper case alphabet characters

A — Z. (2.14)

Digits and pseudo digits together will be referred as ExtDigits. By default, ExtDigits serve as the arguments
for 3 first categories of characters. Underscore is used, primarily, in arguments or in order to distinguish
between sub- and super- scripts in default suffixes. In other cases, underscore represents a void token-name
or serves as a decimal point in digital token-names. Upper case letters are considered as the symbols of math
variables in C-names. In F-names, they are interpreted in the same manner as the low case letters.

There are no suffix recognition characters in the system. Instead certain conventions are introduced for
the length of the suffix. Thus, by default, any ExtDigit sequence following the core is considered as the
suffix.

As the result, this approach allows to reflect the structure of the name-object without use of special
symbols, while still retaining compactness of the name.

In the process of name interpretations, each character (with its ExtDigital optional argument), first, is
interpreted as the prefix. If this fails, it is interpreted as the recognition character for the core. If this fails,
the character is interpreted as the symbol of the math variable in the core. Suffix is then recognized with use
of numerical argument in the core or by default conventions in the system. After the token-name has been
interpreted, the remaining characters are interpreted either as the o-operators or as the next name-object.

The following example of the name may serves as an illustration (without the full explanation of the
system)

q3h2d2a1b ≡ q3h2d2a1︸ ︷︷ ︸
token
name

b︸︷︷︸
token
name

,
(2.15)

4

where underbraces show the token name objects. The first of them has the following structure

q3h2d2a1 ≡ q3h2d2︸ ︷︷ ︸
prefix

a︸︷︷︸
core

1︸︷︷︸
suffix

.
(2.16)

Now, it is possible to explain, that all q, h, d (by convention in the system) are the prefix characters,
while a is not. This uniquely determines the beginning of the first core, i.e., the character a. First, a is
interpreted as the core recognition character. This interpretation fails: the number after “a” is the length of
the subscript which should follow the symbol of the math variable “b”. This is inconsistent with the absence
of characters after “b”. Thus, “a” is interpreted as the symbol of the variable.

Again by convention, a number after the core is a suffix (without the underscore, a subscript). The next
core has no prefixes. Although “b” is the prefix character, it cannot be interpreted this way, and in this
example represents the second core.

The prefixes to the first core are interpreted in the following way, starting from the last one

d2a1 ≡ d2 a1︸︷︷︸
token
name

→ a′′1 , h2 d2a1︸ ︷︷ ︸
token
name

→ a′′1
2
, q3 h2d2a1︸ ︷︷ ︸

token
name

→
(
a′′1
2

) 1

3

(2.17)

and the whole name as

q3h2d2a1b→
(
a′′1
2

) 1

3

b. (2.18)

Although the entire name looks quite ugly, every symbol in these name is meaningful.

3 NGS and compact TeX/LaTeX macros (to ToC)

TeX/LaTeX provides comprehensive capabilities for expressing the meaning of the math variables when the
descriptive commands of the language are converted in the typesetting. NGS has some common ideas with
TeX/LaTeX. Although, being much simpler, NGS does not require the knowledge of TeX/LaTeX, it is useful
to demonstrate the similarity.

3.1 Prefixes and TeX/LaTeX macros (to ToC)

It is possible to notice that the interpretation action of prefixes is analogous to the TeX/LaTeX macros, where
the syntax is such that the name of macros is followed by the argument the macro is acting on. In order to
make the analogy more obvious, we introduce some compact abbreviations for typical math constructions
in TeX/LaTeX which help to convert the prefix interpretation into a typesetting (some exceptions will be
explained in the following sections). Note, that vice versa these TeX/LaTeX expressions for typesetting can
be easily converted into names of NGS.

5

Compact TeX/LaTeX macros Table 1
Use Math TeX/Latex definition Use Math TeX/Latex definition

\b{a} a \def\b#1{\bar{#1}} undefined
\c{a} a \def\c#1{{\tt #1}} \C{3}{a} 3a \def\C#1#2{{\tt #1#2}}
\d{a} ȧ \def\d#1{{\dot{#1}}} \D{3}{a} a(3) \def\D#1#2{{{#2}^{(#1)}}}
\e{a} ea \def\e#1{e^{#1}}} \E{2}{a} 2a \def\E#1#2{{#2}^{#1}}
\h{a} â \def\h#1{\hat{#1}} \H{3}{a} a

3 \def\H#1#2{{#2\over#1}}
\p{a} a2 \def\p#1{{#1}^2} \P{3}{a} a3 \def\P#1#2{{{#2}^{#1}}}
\q{a} √

a \def\q#1{\sqrt{#1}} \Q{3}{a} a
1

3 \def\Q#1#2{{#2^{1\over#1}}}
\r{a} 1

a \def\r#1{{1\over #1}} \R{3}{a} 3
a \def\R#1#2{{#1\over #2}}

\t{a} ã \def\t#1{\tilde{#1}} undefined
\u{a} a \def\u#1{\underline{#1}} \U{3}{A} A[3] \def\U#1#2{{\mfnt{#2} {[#1]}}}
\v{a} −→a \def\v#1{\vec{#1}} \V{3}{A} A[3] \def\V#1#2{{\mfnt{#2}^{[#1]}}}
\w{a} a \def\w#1{{\bf #1}} \W{3}{a} a[3] \def\W#1#2{{\bf #2}^ {[#1]}}
\x{a} a∗ \def\x#1{{#1}^*} \X{3}{a} 3a \def\X#1#2{{#1#2}}

\cm{a} −a \def\cm#1{{-#1}} \Cm{3}{a} −3a \def\Cm#1#2{{\tt -#1#2}}

The left column of macros uses the full set of prefix characters (except those starting with “f”, which
are described separately) for naming the macros. In the present name generating system NGS, these macros
specify the meaning of the corresponding prefix characters, when they are not followed by an argument, and
can be uses for converting the names into the proper TeX/LaTeX typesetting, e.g.,

qhxa︸ ︷︷ ︸
token name

→ \q{\h{\x{a}}}}︸ ︷︷ ︸
LaTeX

→
√
â∗︸︷︷︸

type−
setting

.
(3.1)

The right column represents a set of macros with their names based on the capital version of the prefix
characters. These macros have 2 arguments and their meaning is illustrated in the Table 1. The NGS does
not use the capital characters for the prefixes. Instead, the same small character prefixes with an (ExtDigital)
argument are interpreted in the sense of the right column of the Table 1, e.g.,

q3hmx3a︸ ︷︷ ︸
token name

→ \Q{3}{\left(\H{m}{\X{3}{a}}}\right)}︸ ︷︷ ︸
LaTeX

→
(

3a

m

) 1

3

︸ ︷︷ ︸
type−

setting

.
(3.2)

Two prefix characters “b” and “t” have no corresponding TeX/LaTeX capital name macros. In the NGS,
the prefix “b” with a simple numerical argument, e.g. b3, is interpreted in a special way when the next 3
characters are considered verbatim as the core. Similarly, the prefix “t” with the simple numerical argument,
e.g. t3, specifies the number of following characters which are interpreted as the (nested) name-object

qb9factorial︸ ︷︷ ︸
tokenname

→
√
factorial︸ ︷︷ ︸

type−
setting

, pd1t3asb︸ ︷︷ ︸
tokenname

→ [(ab)′]
2

︸ ︷︷ ︸
type−

setting

.
(3.3)

We leave detailed explanation for the following sections.
In Table 1 there are 2 two-character macro names “\cm” and “\Cm”. In NGS, the prefix “c” stands for

constant variables. As an exception, in combination with “c” the ExtDigit character “m” is considered as
the “minus” sign, not as the argument to the prefix c.

Prefixes and corresponding macros, starting with “f” (standing for “function”), contain 2 characters. At
present only a few of them are specified. In the Table 1a unspecified functions are replaced temporarily by
the # character.

6

2 character TeX/LaTeX macros Table 1a
Use Math Use Math Use Math Use Math

\fa{a} |a| \Fa{3}{a} |3a| \fn{a} # \Fn{3}{a} #
\fb{a} # \Fb{3}{a} # \fo{a} # \Fo{3}{a} #
\fc{a} cos a \Fc{3}{a} cos 3a \fp{a} # \Fp{3}{a} #
\fd{a} # \Fb{3}{a} # \fq{a} # \Fq{3}{a} #
\fe{a} # \Fe{3}{a} # \fr{a} # \Fr{3}{a} #
\ff{a} # \Ff{3}{a} # \fs{a} sin a \Fs{3}{a} sin 3a
\fg{a} # \Fg{3}{a} # \ft{a} # \Ft{3}{a} #
\fh{a} # \Fh{3}{a} # \fu{a} # \Fu{3}{a} #
\fI{a} # \Fi{3}{a} # \fv{a} # \Fv{3}{a} #
\fj{a} # \Fj{3}{a} # \fw{a} # \Fw{3}{a} #
\fk{a} # \Fk{3}{a} # \fx{a} # \Fx{3}{a} #
\fl{a} ln a \Fl{2}{a} log2 a \fy{a} # \Fy{3}{a} #
\fm{a} # \Fm{3}{a} # \fz{a} # \Fz{3}{a} #

Note, that the macro “\fI” has the capital letter in its name because TeX contains a token \fi, which
cannot be overridden. Table 1 and Table 1a cover all prefix characters.

3.2 TeX/LaTeX macros for core recognition characters (to ToC)

In NGS the characters “g” and “z” serve for recognition of Greek and Russian math symbols. Table 2
specifies TeX/LaTeX macros associated with these characters

TeX/LaTeX macros for Greek and Russian symbols Table 2
\ga α \gA A \gn ν \gN N \za a \zA A \zn n \zN N

\gb β \gB B \go o \gO O \zb b \zB B \zo o \zO O

\gc χ \gC X \gp π \gP Π \zc c \zC C \zp p \zP P

\gd δ \gD ∆ \gq θ \gQ Θ \zd d \zD D \zq q \zQ Q

\ge ǫ \gE E \gr ρ \gR R \ze e \zE E \zr r \zR R

\gf ϕ \gF Φ \gs σ \gS Σ \zf f \zF F \zs s \zS S

\gg γ \gG Γ \gt τ \gT T \zg g \zG G \zt t \zT T

\gh η \gH H \gu υ \gU Υ \zh h \zH H \zu u \zU U

\gi ι \gI I \gv ̟ \gV ς \zi i \zI I \zv v \zV V

\gj φ \gJ ϑ \gw ω \gW Ω \zj j \zJ J \zw w \zW W

\gk κ \gK K \gx ξ \gX Ξ \zk k \zK K \zx x \zX X

\gl λ \gL Λ \gy ψ \gY Ψ \zl l \zL L \zy y \zY Y

\gm µ \gM M \gz ζ \gZ Z \zm m \zM M \zz z \zZ Z

Because in new definitions the macro \gg stands for γ and, thus, overrides the original TeX/LaTeX
definition for the symbol “≫” (“much greater”), the macros of Table 2, if used in the TeX/LaTex style-file,
should be complemented by a new command \muchg, introduced for this symbol

\mathchardef\muchg=′′ 321D. (3.4)

The character “s” and “a” serve for recognition of small and capital English math variables and, thus,
have no special macros associated with them.

The character “y” is considered as the core recognition character for the special mathematical symbols.
The set of these symbols is not completely specified yet. In Table 3 undefined y-simbols are replaced
temporarily by @.

7

TeX/LaTeX macros for special symbols Table 3
Use Math TeX/Latex Use Math TeX/Latex Use Math TeX/Latex
\ya & \def\ya{&} \yj @ \def\yj{@} \ys ∑ \def\ys{\sum}
\yb @ \def\yb{@} \yk @ \def\yk{@} \yt ∆ \def\yt{\gD}
\yc · \def\yc{\cdot} \yl @ \def\yl{@} \yu @ \def\yu{@}
\yd . \def\yd{.} \ym − \def\ym{-} \yv @ \def\yv{@}
\ye = \def\ye{=} \yn

∏
\def\yn{\prod} \yw @ \def\yw{@}

\yf / \def\yf{/} \yo
∮

\def\yo{\oint} \yx × \def\yx{\times}
\yg ∇ \def\yg{\nabla} \yp + \def\yp{+} \yy @ \def\yy{@}
\yh ̂ \def\yh{\h{}} \yq @ \def\yq{@} \yz @ \def\yz{@}
\yi

∫
\def\yi{\int} \yr ‖ \def\yr{\parallel}

Here, the macro \yt, corresponding to combination yt in names, (mnemonics “triangle”) for Laplacian
∆ was introduced specially for F-names, which otherwise are incapable of reproducing the capital Greek
letters. For the sake of uniformity the same macro is preferable for Laplacian in C-names, while gD for the
Greek symbol ∆ may be used for names of increments or finite differences.

3.3 o-operators and TeX/LaTeX macros (to ToC)

The remaining character “o” is reserved for recognition of o-operators acting on their left and right arguments,
which are the name-objects (see, (2.7))

< . . . >︸ ︷︷ ︸
argument 1

< o− operator > < . . . >︸ ︷︷ ︸
argument 2

.
(3.5)

The effect of o-operators cannot be simulated by the TeX/LaTeX macros (which have all arguments following
the macro name). While such a construct as o-operator are useless for TeX/LaTeX, the name generating
system can benefit from its use.

At present, only a few o-symbols are specified. One of them, \oh, stays for for the power symbol “hat”,
and another, \of, stays for the fraction line, \oR stays for logical ”or” (we use the capital R in this macro
because TeX has a token \or). In Table4 unspecified o-operators are replaced by the $ character.

Reserved TeX/LaTeX definitions Table 4
Use Math TeX/Latex Use Math TeX/Latex Use Math TeX/Latex
\oa & \def\oa{&} \oj $ \def\oj{$} \os $ \def\os{$}
\ob $ \def\ob{$} \ok $ \def\ok{$} \ot $ \def\ot{$}
\oc · \def\oc{\cdot} \ol $ \def\ol{$} \ou $ \def\ou{$}
\od . \def\od{.} \om − \def\om{-} \ov $ \def\ov{$}
\oe = \def\oe{=} \on $ \def\on{$} \ow $ \def\ow{$}
\of / \def\of{/} \oo $ \def\oo{$} \ox × \def\ox{\times}
\og $ \def\og{$} \op + \def\op{+} \oy $ \def\oy{$}
\oh ̂ \def\oh{\h{}} \oq $ \def\oq{$} \oz $ \def\oz{$}
\oi $ \def\oi{$} \oR ‖ \def\oR{\parallel}

Here, the o-operators are represented by the same symbols as y-symbols in Table 3. In NGS the meaning
for them is different, with y-symbols having local affect (as in math formulas) and o-operators having global
effect in interpretation.

The o-operators with the argument are not introduced yet in the NGS.

8

4 Token names for simple variables (to ToC)

The TeX/LaTeX macros, introduced in the previous section, allows to express the mathematical objects in a
compact and practically comprehensive form. Unlike TeX/LaTeX constructions, names in numerical codes
have important restrictions

• “\”, which in TeX/LaTeX distinguishes service symbols from significant symbols, is not allowed;

• “̂”, which specifies the superscripts, is not allowed;

• “{”, “}”, which specify the scope of action of a preceding command or macros, are not allowed;

• the mathematical symbols, binding different variables, are not allowed;

• only alphabetic, “ ”, and digits are allowed in names;

• in addition, F-names are case insensitive.

These restrictions create difficulties for the name generation and are essentially the reason of the mess in
notations in existing numerical codes. So, one of the problem for the syntax of the name generating system
is to mimic, as much as possible, the TeX/LaTeX capabilities within the restrictions on the name design.

Another problem is, that unlike the math, numerical codes frequently require names for composit (typi-
cally, temporary) variables, like

aoab → a+ b, vaoxvb→ −→
b ×−→

b , (4.1)

which may include names of several mathematical variables binded by mathematical symbols not permitted
in the names for numerical codes.

For this reason, in the given system (2.4-2.6), the names of the code variables are considered, in general,
as a combination of “simple”, or token, names, each corresponding either to the math variable or to the
special symbols (encoded as “y” and a letter) and o-operators specifying the bonds between them.

In this section, we consider the name construction for standing alone variables, or the token-names. The
token name consists from

1. optional prefix (-es)

2. core

3. optional suffix (-es)

as shown earlier in (2.4). Typically, prefixes and the core are recognized using their recognition characters.
Also, the core may contain information about the length of the suffix. Otherwise, any sequence of ExtDigits
after the core is considered as the (default) suffix. Each of elements id discussed in the following subsections.

4.1 Core of the token name (to ToC)

The core specifies the name of the math variable and optionally the length of the super- and sub- scripts.
The core has the following structure

< CORE > ≡ [< low case CRC >]︸ ︷︷ ︸
core recognition

character

[< N1 N2>]︸ ︷︷ ︸
argument

< low/upper case letter >︸ ︷︷ ︸
core symbol

.
(4.2)

Here, “CRC” stands for the core recognition character. In the argument, N1 and N2 are the numbers specifying
the lengths of the super- and sub- scripts. Each of them as well as the underscore are optional. Mixing low

9

and upper case letters for the core symbol in FORTRAN-names does not affect name interpretation and
should be used with a caution.

If its is necessary to distinguish the core from the prefixes or to have an argument in the core, the
beginning of the core should start with one of 5 core recognition characters: s,a,g,z,y. The o-operator
starts with “o”. Simplest examples, explaining the meaning of the core recognition characters of the names
are given in Table 5.

Core recognition characters of the token name Table 5
C-name F-name In Math LaTeX Meaning
a,(sa) a,(sa) a a small “a”
A aa A A capital “a”
ga ga α \ga Greek “a”
gA N/A A \gA “Capital” Greek “a”
za za a \za Russian “a”
zA N/A a \zA Russian “A”
ys ys

∑ \ys special symbols
oh oh ̂ \oh interpretation operator with left and right

arguments

The core recognition character can be dropped if this does not create ambiguity in the name interpretation,
e.g.,

psb → b2, pb → b2. (4.3)

(Prefix p is interpreted as the power of 2). In this example, even without “s” the prefix character “b” (see
Table 1) cannot be interpreted as a prefix. Thus, the core recognition character “s” can be dropped.

The apparent duality (or in other words, flexibility) in the name for the same object (allowed by the
present system) may, in fact, be useful. Thus, it could be desirable to distinguish a simple math variable,
e.g., b from the temporary code service variable b. NGS allows to use the name “sb” for the math variable,
while “b” for the service variable, or vice versa. The level of ambiguity would be acceptable. It will be much
more bug prone to rely on the scope of the variable with the same local and global names in the code.

In C-codes, typically, there is no necessity to use the core recognition character “a” for the capital English
math variables. Any capital letter in the C-name of variable is considered as the core symbol. E.g., the
C-name, ab is considered as the name for a combined variable ab rather than the name for B. The necessity
of using a may appear when it is necessary to have a numerical argument in the core for defining the suffix
length (as, e.g., a4Agagbb→ Aαβb). Anoother reason for use of the core recognition character a in C-names
is that without it, NGS uses special rules for recognizing suffix, while use of a turn on the standard suffix
interpretation

RextBtor→ RextBtor, aAorB → A ‖ B. (4.4)

F-names, which are case insensitive, require ab for variable B (by default, the name b is interpreted as
the name for b). In the present NGS, F-names do not reproduce the capital Greek and Russian characters.

The core recognition character can be followed by a numerical argument, which determines the length of
the suffix (see more in subsection (4.2) about the suffixes). Thus, the following correspondence is valid

g2aidb→ αidb. (4.5)

In the absence of the numerical argument in the core, only ExtDigits after “a” will be considered as the
suffix (subscript) of the name (see, Sect. 7) and, e.g., gaidb would stand for the variable αiḃ.

In general, the digital argument (4.2) has the form N1 N2, where N1 and N2 are the numbers not starting
with 0. There 4 possibilities for numerical arguments

N2, N2, N1 , N1 N2. (4.6)

10

In the first and second cases, N2 specifies how much characters after the core belongs to the subscript. In the
third case, N1 specifies the length of the superscript. In the forth case, N1 is the length of the superscript, while
N2 is that of the subscript. In all cases, when the length is specified, sub- and super-scripts are interpreted
as the name-objects.

Illustrative examples are

a3Agaib→ Aαib, a 3Agaib→ Aαib, a2 Ajb → Ajb, a2 3Ajbgai→ Ajb
αi
. (4.7)

If the length of the suffix is inconsistent with the number of characters behind the core symbol, then the
CRC is considered as the core symbol, e.g.,

g22rqg → g22√
g
. (4.8)

Because 0 is not allowed as the leading character in the argument, the core recognition character with a
leading 0 in its argument is considered as the core symbol, as in the following examples

g01ab → g01ab, g1 01abk → g1
01abk. (4.9)

In C-names, if “a” is followed by a digital argument, it is, first, interpreted as the core recognition
character. In accordance with this, the following is valid

ap → ap, a2A → a2A, a2A1 → a2A1, a2A22 → A22. (4.10)

Here, in the first example, “a” as the core recognition character is inconsistent with low case next character.
Thus, the name stands for a composit variable. Two next examples does not allow to interpret “a” as
the core recognition symbol (suffix is too short) and the name stands for a composit variable. In the last
example, this interpretation went successful (it will be seen later that the simpler C-name “A22” has the
same interpretation A22).

Note, that unlike prefixes (see, subsection 4.3), the core recognition characters a,s,g,z does not allow
the ExtDigital extension in their arguments, e.g.,

g3mab → g3mab, g2mab → µab. (4.11)

Special y-symbols can be used similarly to the regular core, except the form and interpretation of the
argument to y-symbols depends on the symbol itself. Explanation of y-symbols without and with an argument
is given in Table 6, where undefined y-simbols are substituted by @ character.

Special symbols in names Table 6
y-symbol Math Meaning y-symbol Math Meaning

ya, yN1 N2a &,&sup
sub logical “and” yn, yN1 N2n

∏
,
∏sup

sub multiple product
yb, yN1 N2b @,@sup

sub undefined yo, yN1 N2o
∮
,
∮ sup

sub
integral

yc, yN1 N2c ·, ·N1

N2

scalar product yp, yN1 N2p +,+N1

N2

plus

yd, . . decimal point yq, yN1 N2q @,@sup
sub undefined

ye, yN1 N2e =,= N1

N2

equal yr, yN1 N2r ‖, ‖sup
sub logical “or”

yf, yN1 N2f /, sup
sub fraction ys, yN1 N2s

∑
,
∑sup

sub sum
yg, yN1 N2g ∇,∇sup

sub gradient (nabla) yt, yN1 N2t N,Nsup
sub triangle (Laplacian)

yh, yN1 N2h ,̂ (̂ sup
sup) power yu, yN1 N2u @,@sup

sub undefined
yi, yN1 N2i

∫
,
∫ sup

sub integral yv, yN1 N2v @,@sup
sub undefined

yj, yN1 N2v @,@sup
sub undefined yw, yN1 N2v @,@sup

sub undefined
yk, yN1 N2v @,@sup

sub undefined yx, yN1 N2x ×,×N1

N2

vector product

yl, yN1 N2v @,@sup
sub undefined yy, yN1 N2v @,@sup

sub undefined

ym, yN1 N2m −,−N1

N2

minus yz, yN1 N2v @,@sup
sub undefined

11

Numerical argument in special symbols yc,ye,ym,yp,yx interpreted as a corresponding fraction

ay3i 2ab → a+
3i

2
b. (4.12)

In y-symbols yg,yh,yi,yp,yr,ys,yt the numbers in the argument specify the lengths of super- and sub-
scripts (which, in their turn, are considered as the name-objects), e.g.,

y1 4sKkye0ak→
K∑

k=0

ak. (4.13)

Interpretation of super- and sub-scripts is given in Table 6.
As for ordinary core by convention in NGS any sequence of ExtDigits after the y-symbols with no

argument is considered as a suffix, e.g.,

yskak →
∑

k

ak, yskmakm →
∑

km

akm. (4.14)

Symbols “yh” and “yf” without an argument act (like math symbols in FORTRAN expressions) on the
left and right adjacent token-names

sxyhy → xy, r2sxyhpab→
(

2

x

)a2

b, ar2sxyhpab→ a

(
2

x

)a2

b,

sxyfsyi→ x

yi
, sbpsxyfpsyi→ b

x2

y2
i

.

(4.15)

With a numerical argument, they use super- and sub- scripts as their operands and interpret them as the
name-objects

xy4hsigw→ xiω , xy3 hggt → xγt, xy 3hd1q → x
1

q′ , xy3 3hggtd1q→ x
γt

q′ ,

xy2rpe→ x

e2
, xy2 rpbpe → xb2e2, xy 2rpbpe → x

b2
e2, xy2 2rpbpe → x

b2

e2
.

(4.16)

In NGS there are two additional forms of the core not reflected in (4.2). In sophisticated cases, the core
may be specified with use of special prefixes “b” and “t” with a numeric argument “N”. So, in fact, the full
definition of the core is

< CORE > ≡[< low case CRC >]︸ ︷︷ ︸
core recognition

character

[< N1 N2>]︸ ︷︷ ︸
argument

< low/upper case letter >︸ ︷︷ ︸
core symbol

||< bN >︸ ︷︷ ︸
prefix

b

< . . . >︸ ︷︷ ︸
N core
symbols

||< tN >︸ ︷︷ ︸
prefix

t

< . . . >︸ ︷︷ ︸
N core
symbols

,

(4.17)

where “||” means “or”.
In the case of prefix “b”, N following characters are taken verbatim. In the case of prefix “t”, N following

characters are interpreted as the name-object, e.g.,

pb6matrix→ matrix2, pt4ayab→ (a+ b)2. (4.18)

With an underscore in the argument “b” and “t” are interpreted as prefixes and will be discussed in more
detail later on.

Symbol “o” is interpreted as the o-operator recognition character and will be discussed in Section 6.

12

4.2 Sub- and Super-scripts (suffixes) of token names (to ToC)

The suffix of the token name reflects either the sub- or super-script of the math variable. By default, any
sequence of ExtDigits after the core is considered as the suffix. In this case, the character “ ” is designated
for distinguishing the sub- and super- scripts. In default suffixes, the conventions are

1. If “ ” is absent, then the suffix is considered as a subscript, e.g.,

gaij2 → αij2. (4.19)

2. If “ ” is present, ExtDigits between the core and “ ” are considered as the superscript, and remaining
ExtDigits after “ ” as the subscript, e.g.,

gaij → αij , gai j → αi
j . (4.20)

In other cases, the length of the suffix has to be specified by a numerical argument in the core, which
may have one of the forms

N2, N2, N1 , N1 N2. (4.21)

As it was explained already, cases N2 or N2 specify the length of the subscript, N1 specifies the length of
the superscript, while in N1 N2, N1 is the length of the superscript and N2 is the length of the subscript. We
remind that the leading 0 is not allowed in numerical arguments.

If the length is given, sub- and super-scripts are interpreted as the name-objects. The examples are

s2bga → bα, s2 1bga3 → bα3 , s3bgai → bαi , s4bgai → bαi , s4 bgai → bα
i

. (4.22)

As an exception to these rules, in C-names, the sequence of small alphabetic characters after the capital
core symbol with no argument is considered as the suffix. In this case, the underscore separates super- and
sub-scripts which are interpreted verbatim, e.g.,

pAtor → A2
tor, qAtor R →

√
AtorR, qAtop bottom →

√
Ator

bottom. (4.23)

4.3 Prefixes to the simple names (to ToC)

Prefix (-es) precedes the core of the name and intends to specify the meaning of the math variable. Simplest
examples of using names with a prefix are listed in Tables 7,8.

13

Simple variables Table 7
English→F-, C-name Greek→F-, C-name Russian→F-, C-name

a −→a a → a (sa) va (vsa) wa (wsa) α ~α → ga vga a ~a a → za vza wza

b
−→
b b → b (sb) vb (vsb) wb (wsb) β ~β → gb vgb b ~b b → zb vzb wzb

c −→c c → c (sc) vc (vsc) wc (wsc) χ ~χ → gc vgc c ~c c → zc vzc wzc

d
−→
d d → d (sd) vd (vsd) wd (wsd) δ ~δ → gd vgd d ~d d → zd vzd wzd

e −→e e → e (se) ve (vse) we (wse) ǫ ~ǫ → ge vge e ~e e → ze vze wze

f
−→
f f → f (sf) vf (vsf) wf (wsf) ϕ ~ϕ → gf vgf f ~f f → zf vzf wzf

g −→g g → g (sg) vg (vsg) wg (wsg) γ ~γ → gg vgg g ~g g → zg vzg wzg
h

−→
h h → h (sh) vh (vsh) wh (wsh) η ~η → gh vgh h ~h h → zh vzh wzh

i
−→
i i → si () vi (vsi) wi (wsi) ι ~ι → gi vgi i ~i i → zi vzi wzi

j
−→
j j → sj () vj (vsj) wj (wsj) φ ~φ → gj vgj j ~j j → zj vzj wzj

k
−→
k k → sk () vk (vsk) wk (wsk) κ ~κ → gk vgk k ~k k → zk vzk wzk

l
−→
l l → sl () vl (vsl) wl (wsl) λ ~λ → gl vgl l ~l l → zl vzl wzl

m −→m m →sm () vm (vsm) wm (wsm) µ ~µ → gm vgm m ~m m → zm vzm wzm
n −→n n → sn () vn (vsn) wn (wsn) ν ~ν → gn vgn n ~n n → zn vzn wzn
o −→o o → o (so) vo (vso) wo (wso) o ~o → go vgo o ~o o → zo vzo wzo
p −→p p → p (sp) vp (vsp) wp (wsp) π ~π → gp vgp p ~p p → zp vzp wzp

q −→q q → q (sq) vq (vsq) wq (wsq) θ ~θ → gq vgq q ~q q → zq vzq wzq
r −→r r → r (sr) vr (vsr) wr (wsr) ρ ~ρ → gr vgr r ~r r → zr vzr wzr
s −→s s → s (ss) vs (vss) ws (wss) σ ~σ → gs vgs s ~s s → zs vzs wzs
t

−→
t t → t (st) vt (vst) wt (wst) τ ~τ → gt vgt t ~t t → zt vzt wzt

u −→u u → u (su) vu (vsu) wu (wsu) υ ~υ → gu vgu u ~u u → zu vzu wzu
v −→v v → v (sv) vv (vsv) wv (wsv) ̟ ~̟ → gv vgv v ~v v → zv vzv wzv
w −→w w →w (sw) vw (vsw) ww (wsw) ω ~ω → gw vgw w ~w w → zw vzw wzw

x −→x x → x (sx) vx (vsx) wx (wsx) ξ ~ξ → gx vgx x ~x x → zx vzx wzx

y −→y y → y (sy) vy (vsy) wy (wsy) ψ ~ψ → gy vgy y ~y y → zy vzy wzy

z −→z z → z (sz) vz (vsz) wz (wsz) ζ ~ζ → gz vgz z ~z z → zz vzz wzz

Small letters coded similarly in F- and C-names.

14

Simple capital variables Table 8
English→C-name English→F-name Greek→C-name Russian→C-name

A
−→
A A →A vA wA A

−→
A A →aa vaa waa A ~A → gA vgA A ~A A → zA vzA wzA

B
−→
B B →B vB wB B

−→
B B →ab vab wab B ~B → gB vgB B ~B B → zB vzB wzB

C
−→
C C →C vC wC C

−→
C C →ac vac wac X ~X → gC vgC C ~C C → zC vzC wzC

D
−→
D D →D vD wD D

−→
D D →ad vad wad ∆ ~∆ → gD vgD D ~D D → zD vzD wzD

E
−→
E E →E vE wE E

−→
E E →ae vae wae E ~E → gE vgE E ~E E → zE vzE wzE

F
−→
F F →F vF wF F

−→
F F →af vaf waf Φ ~Φ → gF vgF F ~F F → zF vzF wzF

G
−→
G G →G vG wG G

−→
G G →ag vag wag Γ ~Γ → gG vgG G ~G G → zG vzG wzG

H
−→
H H →H vH wH H

−→
H H →ah vah wah H ~H → gH vgH H ~H H → zH vzH wzH

I
−→
I I → I vI wI I

−→
I I → ai vai wai I ~I → gI vgI I ~I I → zI vzI wzI

J
−→
J J → J vJ wJ J

−→
J J → aj vaj waj ϑ ~ϑ → gJ vgJ J ~J J → zJ vzJ wzJ

K
−→
K K →K vK wK K

−→
K K →ak vak wak K ~K → gK vgK K ~K K → zK vzK wzK

L
−→
L L → L vL wL L

−→
L L → al val wal Λ ~Λ → gL vgL L ~L L → zL vzL wzL

M
−→
M M →M vM wM M

−→
MM →am vam wam M ~M → gM vgM M ~M M → zM vzM wzM

N
−→
N N →N vN wN N

−→
N N →an van wan N ~N → gN vgN N ~N N → zN vzN wzN

O
−→
O O →O vO wO O

−→
O O →ao vao wao O ~O → gO vgO O ~O O → zO vzO wzO

P
−→
P P →P vP wP P

−→
P P →ap vap wap Π ~Π → gP vgP P ~P P → zP vzP wzP

Q
−→
Q Q →Q vQ wQ Q

−→
Q Q →aq vaq waq Θ ~Θ → gQ vgQ Q ~Q Q → zQ vzQ wzQ

R
−→
R R →R vR wR R

−→
R R →ar var war R ~R → gR vgR R ~R R → zR vzR wzR

S
−→
S S →S vS wS S

−→
S S →as vas was Σ ~Σ → gS vgS S ~S S → zS vzS wzS

T
−→
T T →T vT wT T

−→
T T →at vat wat T ~T → gT vgT T ~T T → zT vzT wzT

U
−→
U U →U vU wU U

−→
U U →au vau wau Υ ~Υ → gU vgU U ~U U → zU vzU wzU

V
−→
V V →V vV wV V

−→
V V →av vav wav ς ~ς → gV vgV V ~V V → zV vzV wzV

W
−→
W W →W vW wW W

−→
W W →aw vaw waw Ω ~Ω → gW vgW W ~WW → zW vzW wzW

X
−→
X X →X vX wX X

−→
X X →ax vax wax Ξ ~Ξ → gX vgX X ~XX → zX vzX wzX

Y
−→
Y Y →Y vY wY Y

−→
Y Y →ay vay way Ψ ~Ψ → gY vgY Y ~Y Y → zY vzY wzY

Z
−→
Z Z →Z vZ wZ Z

−→
Z Z →az vaz waz Z ~Z → gZ vgZ Z ~Z Z → zZ vzZ wzZ

F-names in NGS cannot reproduce the capital Greek and Russian letters.
Prefixes in interpretation act on the part of the token-name following the prefix and, thus, can follow

each other. The meaning of prefixes without and with argument is explained in the following Tables 9,10.
(For typesetting, they have a straightforward analogy in TeX/LaTeX macros of the Tables 1, 1a).

15

Simple prefixes without argument Table 9
C- or F- name Math LaTeX Meaning
ba a \b{a} “a”-bar
ca a \c{a} constant “a”
da ȧ \d{a} “a”-dot
ea ea \e{a} exponent of “a”
ha â \h{a} “a”-hat
pa a2 \p{a} “a”-squared
qa

√
a \q{a} sqrt of “a”

ra 1
a \r{a} “a”- reversed

ta ã \t{a} “a”-tilde
ua a \u{a} underlined (covariant) vector “a”
va −→a \v{a} vector (contravariant) “a”
wa a \w{a} bold “a”
xa a∗ \x{a} “a”-star

Most of prefixes with the argument have the meaning unrelated to same prefixes without argument as it
is explained in Table 10 with the simplest examples

Simple prefixes with ExtDigital argument Table 10
C- F- name Argument Math LaTeX Meaning
b4dxdy N1 N2 dxdy dxdy verbatim 4 characters dxdy
c2a D1 D2 2a \C{2}{a} constant “2a”

d3a N1 N2 a(3) \D{3}{a} third derivative of “a”
e2a D1 D2 2a \E{2}{a} double integral of “a”
h2a D1 D2

a
2 \H{2}{a} “a” divided by 2

p3a D1 D2 a3 \P{3}{a} “a” in the 3rd power

q3a D1 D2 a
1

3 \Q{3}{a} 1/3-root of “a”
r2a D1 D2

2
a \R{2}{a} 2 divided by “a”

t2pa N1 N2 a2 a2 2 character name-object pa
u3a D1 D2 a[3] \U{3}{a} 3D covariant tensor “a”

v3a D1 D2 a[3] \V{3}{a} 3D contravariant tensor “a”
w3a D1 D2 a[3] \W{3}{a} 3D matrix “a”
x2a D1 D2 2a \X{2}{a} “2a”

Here, “N1” and “N2” denote a non-zero integer numbers, while “D1” and “D2” represent the sequences of
ExtDigits. Except for prefixes u,v,w, zero character “0” is not allowed as the first character in “N1,2” or in
“D1,2”, e.g.,

r2a → 2

a
, r02a → r02a 6→ 02

a
. (4.24)

Prefix “c” has one double character extended form, and “f” prefix has only double character forms. Only
a few of them are specified at the moment in NGS. All others are interpreted as a fictitious #-function prefix.

16

2 character TeX/LaTeX macros Table 11
Name Math Name Math Name Math Name Math
cma −a cm3a −3a
faa |a| fa3a |3a| fna # fn3a #
fba # fb3a # foa # fo3a #
fca cos a fc3a cos 3a fpa # fp3a #
fda # fb3a # fqa # fq3a #
fea # fe3a # fra # fr3a #
ffa # ff3a # fsa sin a fs3a sin 3a
fga # fg3a # fta # ft3a #
fha # fh3a # fua # fu3a #
fia # fi3a # fva # fv3a #
fja # fj3a # fwa # fw3a #
fka # fk3a # fxa # fx3a #
fla ln a fl2a log2 a fya # fy3a #
fma # fm3a # fza # fz3a #

Interpretation of both numeric and ExtDigital arguments depends on the prefix and requires a special
explanation.

4.3.1 Arguments to prefixes b and t (to ToC)

Prefixes “bN1 N2” and “tN1 N2” with an argument play a special role in the NGS. All other prefix operators
are applied to one token name, which stands for only one math variable. The prefixes “bN1 N2” and“tN1 N2”
allow to have an arbitrary name-object as the operand of the previous prefixes. (In some sense, prefixes b

and t replace the pair of braces “{”, “}” existing in TeX/LaTeX for the scope of commands.) Prefixes b and
t may have only numerical argument N1 N2 (otherwise, they are interpreted as the core symbols).

4 possible forms of this argument are interpreted depending on presence of underscore.

1. With a number in the argument without underscore, the argument specifies the number N of the
following characters, which are treated as the core. In the case of “b”-prefix, this string of characters
is taken verbatim, while for the “t”-prefix, it is interpreted as the name-object

pb4time→ (time)2, pt3gab → (αb)2, qt4ayab→
√
a+ b, qt4wAwB22→

√
(AB)22. (4.25)

2. Form N1 means that the string of next N1 characters represent the superscript for the following token-
name at the current level of nestness

qb5trans pwA →
√(

A2
)trans

, qt4gagbhx→
√

(x̂)αβ ; (4.26)

3. form N2 means that the next N2 characters represent the subscript for the following token-name

d2b2xyeF→
(
eF

)′′
xy
, d2t4gagbeF→

(
eF

)′′
αβ

; (4.27)

4. form N1 N2 specify the length N1 of superscript and N2 of subscript for the following token-name .

In the case of “b” prefix, the resulting strings are considered verbatim, while for “t”, they are interpreted
as a name-object.

Thus, prefixes “b” and “t” with an argument provide opportunity for names of nested math objects.

17

4.3.2 Arguments to prefixes c,cm,e,p,r,x (to ToC)

ExtDigital argument D1 D2 of these prefixes is interpreted as a factor

D1 → D1, D1 → D1 (4.28)

or as a fraction

D2 → 1

D2
, D1 D2 → D1

D2
, (4.29)

e.g.,

c2 5gp → 0.4π, e1 2a →
(

1

2

)a

, p3i 2a → a
3i
2 , r3i 2a → 3i

2a
, x3i 2a → 3i

2
a. (4.30)

Argument to 2-character prefix cm is interpreted in the same way as for prefix c.

4.3.3 Arguments to prefixes h,q (to ToC)

ExtDigital argument D1 D2 of these prefixes is interpreted as an inverse factor

D1 → 1

D1
, D1 → 1

D1
(4.31)

or as an inverse fraction

D2 → D2, D1 D2 → D2

D1
, (4.32)

e.g.,

h2 5gp → 5

2
π, q3i 2a → a

2

3i . (4.33)

This interpretation is consistent with interpretation of the simple argument for these prefixes in Table 10.

4.3.4 Arguments to prefixes u,v,w (to ToC)

ExtDigital argument D1 D2 of these prefixes is interpreted as the superscript D1 and the subscript D2, e.g.,

u2A → A2, u2 A → A2, u2 1A → A2
1, v2A → A2, v2 A → A2, v2 1A → A2

1, w2 1A → A2
1. (4.34)

4.3.5 Arguments to prefix d (to ToC)

Note, that in NGS there is no special prefix for the TeX character “ ′ ” meaning the derivative in math.
Prefix d with the argument is introduced for these purposes, e.g.,

d1f → f ′, d2f → f ′′, d4f → f (4). (4.35)

Thus, this prefix may have only numerical argument of the form N1 N2 (rather than ExtDigital). Its simplest
form is explained in the above examples. Other forms, containing the underscore, give more flexibility to
the meaning of this prefix.

Thus, one number with an underscore (either N1 or N2) specifies both the rank of derivative as well as
the length of the following name-object, which is treated as the superscript to the operand of the prefix, e.g.,

d2 xypf →
(
f2

)′′
xy
, d 2xypf →

(
f2

)′′
xy
. (4.36)

In the form N1 N2 with both numbers present, N1 specifies the rank of derivative, while N2 the length of the
subscript name-object

d2 4gqgqpf→
(
f2

)′′
θθ
. (4.37)

18

4.3.6 Arguments to prefixes starting with f (to ToC)

ExtDigital arguments are allowed in double character prefixes starting with f. For prefixes defined in Table
11 these arguments with an underscore are interpreted as a fraction, e.g.,

fc3i mgq → cos
3i

m
θ, fl 2a → log 1

2

a. (4.38)

4.3.7 Repeatable and non-repeatable prefixes (to ToC)

The token name can have several prefixes and each of them acts on the following shortened token-name. The
following prefixes

b, t, h, x, d, e, p, q, r (4.39)

as well as f-based double character prefixes are repeatable. In most cases (important exceptions follow),
they are interpreted in a straightforward manner (as the corresponding TeX/LaTeX commands of Table 1)
applied up to the end of the token-name,

erga ≡ \e{\r{\ga}}→ e
1

α , ere2gai ≡ \e{\r{\E{2}{\ga i}}} → e
1

2
αi . (4.40)

As a deviation from the general rule, in the present system, the sequence of repetitive prefixes p,r,q

following each other is considered in a special “multiplicative” way:

• presents of r is treated as a negative power for accumulated (from the right to the left) power;

• powers corresponding to each p and q are added.

This exception from the analogy with TeX/LaTeX, in fact, makes some name generating easier. Illustra-
tive examples are

p3ipa → a3i+2 6→
(
a2

)3i
, p3irp3a → a3i−3 6→

(
1

a3

)3i

, p3irq3ea→ (ea)
3i−1/3 6→

(
1

ea1/3

)3i

. (4.41)

Instead,

(
a2

)3i
= a6i → p6ia,

(
1

a3

)3i

=
1

a9i
→ p9ira,

(
1

ea1/3

)3i

=
1

e3ia1/3
→ rex3iq3a. (4.42)

All other prefixes
c, w, u, v (4.43)

are not repeatable in the prefix to the same token name. Also

u, v, w (4.44)

are not compatible with each other. Their repetition in the name is interpreted as the beginning of the core,
e.g.,

cpc3r → p3r, pwuvx → u2−→x . (4.45)

The preference is to use “c” in front of the names for the constants.

19

4.3.8 Prefixes for names of integer variables (to ToC)

So far, prefixes with or without argument specified the meaning of math variables in the code names irre-
spective to their integer or non-integer character. If it is necessary to emphasize the integer character of the
variable one of the pseudo digital character “i”— “n” should stay in front of the name. In interpretation, it
is considered as a prefix for integer variables. All the rest is interpreted in the same way as explained already

i → i, ii → i isi → i, iik → ik, ii2 k → i2k, ix2sk → 2k, ix2k → x2k. (4.46)

NGS suggests use of leading “l” in names for pointer variables (as the first character of the name, it cannot
be confused with a digital character “1”).

Present NGS does not restrict use of prefixes for integer variables despite some of them are irrelevant for
integers.

5 Void and Digital token-names (to ToC)

So far, underscore character was used for interpretation of numerical or ExtDigital arguments either to the
prefix or to core recognition characters or for interpretation of ExtDigital suffixes. As it is explained later in
this section, underscore also plays a role of a decimal point in digital token names. In other situations, NGS
considers the underscore simply as a void token-name, which is interpreted as a space “ “ character. This
interpretation of underscore has the lowest priority with respect to other interpretations.

Void token-names can be used for separating token-names in the name-object, e.g.,

c 3 → c 3, pg b → g2 b, pgsb → g2b, pi jk → pi
jk, pi j k → pi

jk, pi j → pij, p j → pj, pp → p2.
(5.1)

When placed in front of the first token name, any number of underscores are ignored in interpretation as
void token-names. Exceptional names, consisting exclusively from underscores, stand for a fictitious variable

→ , → . (5.2)

Void token-name has no suffix.
In NGS, the token-name may start with a sequence of digits. E.g., underscore in front of the name allows

to have leading digits even in the first functional token-name without conflict with the syntax of computer
language. The subsequent token-names may also have leading digits in the name.

NGS interprets the leading sequence of digits in the token name as a separate token name, e.g.,

25b → 25b, p 25b → p25b, p 25ib → p25b. (5.3)

(In the third example, i in front of the token name ib serves as a prefix specifying b as an integer math
variable and, thus, does not appear in typesetting).

Leading sequence of digits with an underscore is interpreted as a decimal fraction (second underscore in
the sequence of digits just starts a new token-name), e.g.,

3 → 3, 3 b → 3.b, 3 1415 → 3.1415, 3 1415 2 → (3.1415)2. (5.4)

6 Composit names. o-operators (to ToC)

Composit names represent either concatenation of the token-names (with or without o-operators) or different
kind of nested name-objects.

Prefix t, as it was explained in subsection 4.3.1, provides an opportunity to have one name-object inside
another name-object. Also, numerical argument after the core recognition character allows to have name-
objects either in super- or sub-scripts.

20

In NGS, as it was already explained, the end of the token name is well-defined by conventions concerning
the suffixes. What follows after the suffix is considered as the next name-object which could be further
decomposit into the token names.

All of these opportunities allow to generate compact names for complicated math objects. Thus, using
special symbols from Table 6 one could create such names as

yskvxk →
∑

k

(~x)k, y2txyf → ∆xyf, yib5Fdxdy→
∫
Fdxdy, vAyxvBij→ (~A× ~B)ij . (6.1)

Here, in the last example yx, in fact, acts similar to the o-operator on the token names on the left and right
side from it.

The o-operators have been introduced into NGS for expressing mathematical relations which may involve
several variables. The global nature of the scope of action of o-operators was explained in scheme (2.7). At
present, a very few of them are defined. In Table 13 undefined o-operators are replaced by & character.

o-operators for composit names Table 13
o-symbol Math Meaning o-symbol Math Meaning o-symbol Math Meaning
oa & logical “and” oj $ undefined os $ undefined
ob $ undefined ok $ undefined ot $ undefined
oc · product ol $ undefined ou $ undefined
od . decimal point om − subtraction ov $ undefined
oe $ undefined on $ undefined ow $ undefined
of / fraction oo $ undefined ox × product
og $ undefined op + addition oy $ undefined
oh ̂ power oq $ undefined oz $ undefined
oi $ undefined or ‖ logical “or”

(See also TeX/LaTeX macros in Table 4 for symbols of o-operators).
Unlike math symbols and their NGS analogs in y-symbols, whose interpretation include only adjacent

token-names, o-operators have global arguments (2.7). Using o-operators it is possible to make names like

ga2ohaypb→ αa+b, aymboraypb→ a− b

a+ b
. (6.2)

Same effect using y-simbols can be achieved only with more complicated names, i.e.,

ga2yht4ayab→ αa+b, t4aymbyrt4ayab→ a− b

a+ b
. (6.3)

7 Interpretation of computer code names (to ToC)

What was explained already is practically sufficient for the name generation using NGS. This section describes
a formal algorithm of name interpretation as it is implemented into the computer code gns. NGS takes
advantage of capital letters in C-names, while in F-names capital letters are interpreted as small letters.
Because of this, both name generation and name interpretation are slightly different for C- and F-names.

7.1 Interpretation of C-names (to ToC)

Interpretation proceeds from left to right.

1. First, all prefixes with their optional ExtDigital arguments are recognized, until the interpretation of
prefixes fails. There are 4 reasons for such a failure

21

(a) The current character is not from the prefix character set “b”, “c”, “d”, “e”, “f”, “h”, “p”, “q”,
“r”, “u”, “v”, “w”, “t”, “x” as well as not one of the pseudo digits “i”, “k”, “l”, “m”, “n” in
front of the token-name.

(b) The current character is incompatible with the previous prefix characters, i.e.,

i. It repeats one of unrepeatable prefix characters, i.e., c, u, v, w.

ii. It is incompatible with the previous prefixes. Prefixes u, v, w are incompatible with each
other.

iii. It is either b or t with an argument in the form N.

(c) The argument D1 D2 is wrong or incompatible with the prefix character, i.e,

i. In the argument for prefixes other than u, v, w, either D1 or D2 starts with 0 character.

ii. In the argument to prefixes b, d, t, either D1 or D2 is not digital.

iii. The number of remaining characters in the name is smaller than specified by the argument
to prefixes b,d,t.

(d) The prefix would have no core in the token-name, e.g.,

ppib2 → b1+i
2 , ppib2orayab→ b1+i

2

a+ b
, ppibayab → b1+ia+ b. (7.1)

The underscore, which is not a part of the argument or of the suffix, and o-operators terminate
the token-name.

In the case of failure in prefix interpretation, the interpretation process is switched to the core.

2. Second, the core is interpreted.

(a) If it is specified by the prefix b with a numerical argument, then it is considered verbatim.

(b) If it is specified by the prefix t with a numerical argument, then it is interpreted as a (nested)
name-object.

(c) If the first character is one of s, a, g, y, z, then it is interpreted as the core recognition
character (Table 5). This interpretation fails, if

i. It would be no core symbol in the token-name, e.g.

pg → g2, pga → g2a. (7.2)

Underscore which is not part of the argument or of the suffix terminates the
token-name.

ii. Lenght of the suffix, specified by the argument to the core recognition character,
is inconsistent with the number of characters after the core, e.g.,

s2a → s2a. (7.3)

If interpretation of the core recognition character fails, the character is considered
as the core symbol.

3. Third, the super- and sub-scripts in the suffix are interpreted.

(a) If their lengths are specified by the argument of the core recognition character, then they are
interpreted as the name-objects.

22

(b) Otherwise a sequence of ExtDigits with an optional underscore is interpreted as a suffix. Also, in
the case when the core symbol is the capital letter, the suffix is determined by the special rules
for C-names.

4. After the token-name, the o-operator, if present, is recognized as a double alphabet string starting
with o.

5. The process of recognition of token names and o-operators is repeated for the next token name recog-
nition starting with the interpretation of prefixes until the end of the name is encountered.

6. Finally, the name and its structure are interpreted based on interpretation of the token-names and
o-operators.

7.2 Interpretation of F-names (to ToC)

The only difference between interpretations of F- and C-names is that during interpretation the capital
letters in the F-names are converted into small letters, e.g.,

gB → β, gb → β, ab → B, sB → b. (7.4)

As a result, all C-name conventions, which rely explicitly on capital letters (like recognition of core symbols,
convention about suffixes to capital variables) are not applicable for F-names.

Otherwise, the algorithm of F-name interpretation is the same as described in the previous subsection.
Because of case insensitivity, F-names cannot reproduce the capital Greek and Russian letters, while

names for capital English math variables should use the core recognition character a.

8 Name design in Equilibrium and Stability Code (ESC) (to ToC)

In ESC, reference flux coordinates a, τ, ϕ are defined by Fourier representation

r = R0 +Rc
0 + 2

Kr−1∑

k=1

(Rc
k(a) cos(mkτ − nkϕ) +Rs

k(a) sin(mkτ − nkϕ)) ,

z = Z0 + Zc
0 + 2

Kz
−1∑

k=1

(Zc
k(a) cos(mkτ − nkϕ) + Zs

k(a) sin(mkτ − nkϕ)) ,

r′p ≡ r′τ , r′t ≡ r′ϕ, z′p ≡ z′τ , z′t ≡ z′ϕ.

(8.1)

The corresponding data structure in the code is

Typedef struct EQCOORD{
int Na1;
int Np;
int Np1;
int Nt;
int Nt1;
int Kr;
int Kz;
int *mk;
int *nk;
double R0;
double Z0;
double *Rc;
double *d1Rc;
double *d2Rc;
double *Rs;
double *d1Rs;

23

double *d2Rs;
double *Zc;
double *d1Zc;
double *d2Zc;
double *Zs;
double *d1Zs;
double *d2Zs;
double *r;
double *d1_ar;
double *d1_pr;
double *d1_tr;
double *z;
double *d1_az;
double *d1_pz;
double *d1_tz;

}EQCOORD;

Here, Na is the number of radial intervals, Na1=Na+1, Na is the number of poloidal intervals, Np1=Np+1, Nt is
the number of toroidal intervals, Nt1=Nt+1, Lt is the number of toroidal periods.

Its metric tensor is represented in Fourier space as

gij√
g

= Gc
ij + 2

Kg−1∑

k=1

(
Gc

aa,k(a) cos(mkτ − nkϕ) +Gs
aa,k(a) sin(mkτ − nkϕ)

)
,

J ≡ √
g =

D(x, y, z)

D(a, τ, ϕ)
, i = a, τ, ϕ, j = a, τ, ϕ.

(8.2)

The corresponding data structure in the code is

Typedef struct EQMETRIC{
int Na1;
int K;
int *mk;
int *nk;
double *Jc;
double *d1Jc;
double *d2Jc;
double *Js;
double *d1Js;
double *d2Js;
double *G11c;
double *d1G11c;
double *d2G11c;
double *G11s;
double *d1G11s;
double *d2G11s;
double *G12c;
double *d1G12c;
double *d2G12c;
double *G12s;
double *d1G12s;
double *d2G12s;
double *G22c;
double *d1G22c;
double *d2G22c;
double *G22s;
double *d1G22s;
double *d2G22s;
double *G13c;
double *d1G13c;
double *d2G13c;
double *G13s;
double *d1G13s;
double *d2G13s;
double *G22c;
double *d1G23c;

24

double *d2G23c;
double *G23s;
double *d1G23s;
double *d2G23s;
double *G33c;
double *d1G33c;
double *d2G33c;
double *G33s;
double *d1G33s;
double *d2G33s;

}EQMETRIC;

Plasma profiles are represented by one-dimentional functions

P ≡ dp̄

dΨ̄
, p̄ ≡ µ0p, Ψ̄ ≡ Ψ

2π
,

T ≡ F̄
dF̄

dΨ̄
, F̄ ≡ rBtor,

jp ≡ R0P, js ≡ T

R0
+R0P, q, µ ≡ 1

q
,

(8.3)

The corresponding data structure is

Typedef struct EQPROF{
int Na1;
double *aP;
double *d1aP;
double *d2aP;
double *aT;
double *d1aT;
double *d2aT;
double *s1jp;
double *d1s1jp;
double *d2s1jp;
double *s1js;
double *d1s1js;
double *d2s1js;
double *sq;
double *d1sq;
double *d2sq;
double *gm;
double *d1gm;
double *d2gm;
double;

}EQPROF;

The meaning of the names here is straightforward. Presence of first derivatives allows to reconstruct
function at any point using bi-cubic interpolation, while the second derivatives allow to use cubic splines.

These structures together represent the structure of equilibrium configuration

Typedef struct EQCONF{
int Na;
int Na1;
int Np;
int Np1;
int Nt;
int Nt1;
int Lt;
double Bext;
double Rext;
EQCOORD *Coord;
EQMETRIC *G;
EQPROF *p;

}EQCONF;

Here, Bext represents the vacuum toroidal magnetic field at the reference point r = Rext. This structure is
the output of ESC.

25

9 Summary (to ToC)

The very recognition of the name design as a problem in the environment of development and sharing big
numerical codes is already a step forward from the present state of absence of guidance in naming the math
variables.

For the math variables, the JAVA-like English based descriptive approach (good in for its own purposes),
lacks compactness and, thus, is incompatible with the spirit of the mathematics. On the other hand, a
formalized system of the compact name design, based on some general principles, simplifies both the name
generation and understanding the source code.

The name generation system NGS described in the paper gives practically comprehensive means for
expressing the meaning of mathematical variables in compact computer language names. In future, it could
allow an automatic maintenance of certain portions of documentation in a form consistent with the source
code. The system also provides a room for extending its capabilities if it will be necessary.

Modest efforts in keeping entropy low in the growing ensemble of names by using a name design system
simplify significantly the maintenance of the transparent documentation and the source code. There is no
penalty for deviation from the system conventions. In fact, deviations may represent a reasonable compromise
between simplicity in names and uniqueness of their interpretation with individually acceptable level of
ambiguity. What is important is that presence of a rigorous reference system, such as NGS, in any case
provides a guidance for the name design.

26

